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On the Memory Functions in Simple Classical Liquids 
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The relation between the two memory function formalisms for correlation 
functions in classical liquids is discussed. It is found that the kinetic equation 
formalism of Duderstadt and Akcasu with a simple exponential memory 
function can account for the double Gaussian form of the memory function 
in the generalized-hydrodynamics approach. The former therefore gives 
reasonably good results for the coherent scattering function ~{(k, co), as 
is shown for the case of liquid Rb at 315 K in the range 1.25 ~< k ~< 
5.5 A-1. 
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1. I N T R O D U C T I O N  

Two m e m o r y  funct ion formal isms ~1) have been developed for  the analysis o f  
t ime correlat ions in classical liquids. One is based on the non -Markov ian  
kinetic equat ion of  the fo rm 

---~ F(k,  v, v', t) - ik .vF(k ,  v, v', t)  
at  

+ ik .vM(v)nC(k)  j F(k,  v, v', t)  dv 

= - dt '  dv"~(k, v, v", t - t ' )F(k ,  v", v', t ' )  (1) 

for  the correlat ion funct ion F(k,  v, v', t)  o f  density fluctuations in phase  space 
and  time. (2-7) The  other  is based on the generalized hydrodynamics  <8-12) and 
the continued fract ion representat ion o f  the fo rm (n-l~) 

~o2(k) '~ -1 
• k ,  s) = S(k) s + s + [coz2(k) - o~0Z(k)]_/~r(k, s)]  (2) 
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for the Laplace transform of the space-time density correlation function 
F(k, s). Here, 37t(k, s) is the memory function associated with the longitudinal 
current correlations. 

Both of the formalisms are exact, and the first-principles calculation of 
the memory functions is rather difficult. (6'7,9"1~ The usefulness of the formal- 
isms therefore depends entirely on the choice of a suitable mathematical form 
for the memory functions, or, alternatively, on selecting a set of appropriate 
dynamical variables for which the Markovian description is valid. 2 Lebowitz 
et al. TM and Duderstadt and Akcasu (4~ used the ansatz 

~o(k, v, v', t) = W(k, t)cp(k, v, v', 0) (3) 

The latter authors assumed for the memory function W(k, t) 

W(k, t) = exp[-a(k)t] (4) 

with 

c~(k) = c~(O)[1 + (k/ko) 2] (5) 

and proposed a modeled kinetic equation (MKE), which contains a free 
constant parameter ko. Despite being such a simple model, the MKE was 
found to give a good result for the current correlation functions in liquid 
Ar. (4~ Jhon and Forster (6~ pointed out and remedied the defect that the MK E 
fails for small k and o~ because of the incorrect hydrodynamic limit of the 
assumption (3). 

The memory function in the continued fraction (CF) formalism, on the 
other hand, has been shown by Rahman to consist, in the hydrodynamic limit, 
of two parts arising from dissipations due to viscosity and heat diffusion. (11~ 
He thus assumed a double Gaussian form for the memory function M(k, t) 
(in time domain). Kahol et al. (la~ analyzed the experimental (~5~ and molecular- 
dynamics (~6~ data on the dynamical structure factor S(k, ~) of liquid Rb, 
showing that the double Gaussian memory function gives quite good agree- 
ment with the data in the range 0.174 ~< k ~< 3.5 A -  1, while a single Gaussian 
form is sufficient for k > 3.5 A -~. 

The purpose of the present paper is to discuss the relation between the 
MKE formalism and the CF formalism. We note here that the memory 
function M(k, t) in the CF formalism contains the effect of the free-particle 
motion, which gives no contribution to the memory function W(k, t) in the 
MKE. We may therefore expect a simpler form for W(k, t) than for M(k, t) 
to obtain a result of the same quality. This is an advantage of the kinetic 
equation approach, in which various microscopic processes are treated 
explicitly and separately, in contrast to the hydrodynamic approach. Our 

2 If such a "complete" set of the dynamical variables is found, it is easy to determine the 
memory function. See, e.g., Refs. 7 and 9. 
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numerical calculation will be restricted in this paper to liquid Rb in the range 
of wave numbers 1.25-5.5 A -~, where the experimental data of Copley and 
Rowe are availableJ 12~ In this region of relatively large wave numbers, the 
MKE is expected to be valid, and we shall not consider in this paper the 
memory function of Jhon and Forster. (6~ The assumption (5) in the MKE is, 
however, too simple to account for a marked k dependence of the relaxation 
time (see Fig. 1). We shall therefore treat ~(k) as a free parameter. 

In Section 2 we shall relate the MKE to the CF representation (2) and 
find the memory function _~r(k, s) that corresponds to the exponential one in 
the MKE. The parameter ~(k) is determined through the quantity 3~r(k, s = 0), 
which can be interpreted as a generalized relaxation time and is given experi- 
mentally by the value of ~(k, w) at ~o = 0. In Section 3 it is found that the 
memory function M(k, t) in time domain behaves like a double Gaussian. 
The MKE with the simple exponential memory function therefore takes good 
account of the two distinct decays of M(k, t) found in the CF approach, and 
gives a good representation of the experimental data on ~(k, w). Section 4 is 
devoted to a discussion of the results. 

2. M E M O R Y  FUNCTION IN LAPLACE D O M A I N  

In this section we shall relate the MKE to the CF representation to find 
the memory function 3~r(k, s), and then discuss the relaxation time ~ ( k ,  0) 
to determine the parameter a(k). 

2.1. Relation Between the T w o  Formalisms 

The relation can be found if we construct from the MKE an equation 
for the longitudinal current correlation function, and thus find the memory 
function M(k, t) associated with the current correlations. Equivalently, this 
can be done in Laplace domain by solving the MKE and by comparing the 
result for the density correlation function F(k, s) with the CF representation 
(2). The MKE can be solved analytically, (3'6~ and if(k, s) is given by Eq. 
(8.17) of Ref. 3, which we rewrite in the following form: 

P(k, s) = S(k)[s + ~'(~, s)]-I 

where 

L'(k, s) = [1 - nC(k)]b(k, s)/a(k, s) 

b(k, s) = 1 - s2(k, s) 

a(k, s) = s-l{1 - [1 - sffZ(k, s)k-2A(k)]b(k, s)} 

(6) 

(7) 

(8) 

(9) 
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Here, S(k)  is the static structure factor, n the number density, C(k) the direct 
correlation function, 

2(k, s) = e~K-2<~+~2)7(z + K 2, K2)/[(s) (10) 

if(k,  s) = Is + ~(k)1-1 

A(k)  = nC(k)k  2 - mfis 2 

n _f cos(kz)g(r) O2v(r) dr f2~ = m ~ (11) 

~(s) = f2o2ffZ(k, s), z = slY(s), ~c 2 = k2/mfi~2(s) 

where m is the mass of an atom, and/3 = (kBT)- 1, T being the temperature. 
In (10), 7(z + ~2, K2) is the incomplete 7 function, and in (11), g(r) is the 
pair distribution function and v(r) the pair potential. 

The large-s behavior of 2(k, s) is found to be 

1 k 2 1 k 2 [3k 2 ) 1 k 2 
s mfl s ~ + - ~  l'~fi + s176 f~o~a(k) 1 2(k, s) s s mfi 7 + "'" (12) 

from which we see that the memory function/~'(k, s) can be written as 

L'(k ,  s) = OJo2(k)TL(k, s) = O~o2(k){s + [COz2(k) - 6Oo2(k)]~r(k, s)} -1 (13) 

where the memory functions L(k, s) and M(k, s) are normalized such that 
sL(k, s) -+ 1 and sM~k, s) -~ 1 for s --> 0% or in time domain 

L(k,  t = O) = U ( k ,  t = O) = 1 (14) 

In (13), O~o2(k) and r defined by 

COo2(k) = k2/mfiS(k) (15) 

oJfl(k) = 3k2/m~ + f~o 2 - y~ 2 06) 

are the ratio of the second and zeroth moments of the coherent scattering 
function ~(k, ~o)= rr -1 Re if(k, ioJ), and that of the fourth and second 
moments, respectively. Equation (14) is obvious since the MKE formalism 
correctly satisfies the zeroth-, second-, and fourth-moment sum rules. Com- 
paring the correlation function if(k, s)  given by (6), (7), and (13) with (2), we 
see that the MKE gives the following memory function for the longitudinal 
current correlations: 

1 [k 2 a(k, s) ) 
ffI(k, s) = w2(k)  - COo2(k ) \m/3 b(k, s) s_ (17) 

which is not simply the Laplace transform of an exponential or Gaussian 
function. The inverse Laplace transformation will be carried out in the next 
section to see the behavior of the memory function in time domain. We now 
determine the unknown parameter a(k). 
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2,2. Relaxat ion Time 

To find a convenient method of determining a(k), we consider the area 
under the curve M(k ,  t), 

f: r(k) = M(k ,  t) dt = ]l~(k, s = 0) (18) 

which can be interpreted as a relaxation time so long as M(k,  t) does not 
take large, negative values or oscillate strongly. Note that the relaxation time 
r(k) is defined without specifying a mathematical form of M(k ,  t), and can be 
found experimentally from the S(k, 0) value through the relation 

S(k,  O) = [S(k)(w, 2 - Wo2)/rrwo2]r(k) (19) 

We see from (19) that two memory functions with the same relaxation time 
result in the agreement of~(k,  co) at oo = 0. In the case of the memory function 
(17), we have 

1 I ~~ r ( k ) = ; ~  1 + o, 3--_,~o ~[J(~)- 11 

where 

J(K) = e'~2K 2(1 -'~=)y(K 2, K 2) and 

k2Do 2 
a,,~ 7 Go2fl (20) 

Vo = = 2/m5 

Although the MKE is not a good approximation at small w, we deter- 
mine, as a convenient method, (5) the parameter a(k) such that the relaxation 
time (20) coincides with the experimental one. We have evaluated the experi- 
mental relaxation time using the results for ,~(k, 0) and S(k)  of Copley and 
Rowe on liquid Rb at 315 K. The experimental results for the fourth moment 
of ~(k, ~) are unreliable, (lm and use has been made of the analytical expression 
of ~o~(k) given by Hubbard and Beeby, (17) with the parameters chosen to be 
c~E 2 = flo2 = 36.84 psec -2 and ro = 4.4048 A. ~18'16~ The results are shown 
in Fig. 1. We have also plotted in Fig. 1 the relaxation time (20) with the 
assumption (5) for a(k), where a(0) = 5.96 psec -1 has been determined from 
the known value of the shear viscosity, % --= 6.7 • 10 -a p.(~8) It is seen that 
the assumption (5) fails to describe the k dependence of the experimental 
relaxation time. The relaxation time (20) has a lower limit 

r~(k)  = {rrl/~kvo/(w, 2 - wo 2) (21) 

corresponding to c~(k) --+ oo. In this limit the MKE reduces to the linearized 
Vlasov equation studied by Nelkin and Ranganathan. ag) The relaxation time 
ro~(k) has also been plotted in Fig. 1. I f  the experimental relaxation time lies 
below r| the relaxation time (20) cannot be made to coincide with the 
experimental one. This occurs for k > 4.5 A -~ except at k = 5.0 A -~. For  
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Fig. 1. The relaxation time ~-(k) for liquid Rb at 315 K. The dots denote the experimental 
results of Copley and Rowe, C15~ as obtained from Eq. (19). The solid curves show ~-(k) 
defined by Eq. (20) with the assumption (5) for ~(k) with three values of k0 (in A-1) .  
The curve for ko = 0 represents the collisionless limit, Eq. (21). 

Table I. Wave Number Dependence of the Param- 
eters = 

k, ~(k), ~'(k), ~(k), 
/~.-1 psec psec psec -1 y(k) 

1.25 0.1146 0.1669 8.50 0.795 
1.50 0.1190 0.1691 7.61 0.694 
1.75 0.1596 0.1635 4.12 0.561 
2.0 0.1725 0.1813 3.42 0.517 
2.5 0.1150 0.1472 6.64 0.552 
3.0 0.0895 0.0928 9.33 0.390 
3.5 0.0804 0.0815 10.4 0.295 
4.0 0.0646 0.0647 38.0 0.319 
4.5 0.0602 0.0588 ~ - -  
5.0 0.0570 - -  284 0.202 
5.5 0.0510 - -  co - -  

~'(k) is the experimental relaxation time shown in Fig. 1 ; ~-'(k) 
is calculated from Eq. (18) for the double Gaussian memory 
function of Kahol  et a151a); a(k) is determined by Eq. (20) 
with the experimental relaxation time ~-(k); and y(k) is de- 
fined by Eq. (23). 
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such a large k the mean  field t rea tment  is valid, and we put  ~(k) = oo. The 
values of  ~(k) thus determined are listed in Table  I. 

3. NUMERICAL RESULTS 

We now proceed to calculate  the m e m o r y  funct ion M ( k ,  t )  in t ime 
domain. We have seen that M(k ,  t) is normalized to unity at t = 0 and 
decays to zero as t ---> oo [see (18), where ~(k) is finite]. The short-time behavior 
of M(k,  t) is of interest here, since it gives some idea of whether M(k,  t) 
behaves like a Gaussian or an exponential. From the asymptotic expansion 
(12) it follows that 

M(k ,  t)  = 1 - y(k)a(k) t  + ... (22) 

The initial decay rate ~(k) of the original memory function W(k, t) is thus 
converted to y(k)~(k),  where 

y ( k )  = i - _ =) 

By vir tue o f  the inequal i ty  

col 2 --  COo z >1 k2vo 2 >1 0 

(23) 

(24) 

1.0 

o.1 k ""'"'"--.. \ \  "'"-.... 

o.ol I v I I i ..... ~ i  " " ~  ~ 
0.2 0.4 0.6 0.8 1.0 1.2 

t (psec) 
Fig. 2. The memory function M ( k ,  t)  (solid line) at k = 2.0/~-l ,  corresponding to 
the exponential memory function (dotted line) in the MKE. The double Gaussian 
memory function (dashed line) of Kahol et al. C13~ is shown for comparison. 
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which has been proved by Kugler [see Eq. (B6) of Ref. 5], we see that 0 ~< 
y(k) ~< 1. Also, we easily see that y(k) -+ 0 for k -+ o% and that y(k) _ 1 at 
k = 0 since the longitudinal sound velocity (2~ C3 = lim~_~o ~z(k)/k and the 
isothermal sound velocity Cr = vo/[2S(O)] ~12 are much larger than vo. The 
memory function M(k, t) therefore decays initially like a Gaussian for large k 
and an exponential for small k. The values of y(k) in the case of liquid Rb 
are given in Table I. 

An analytical calculation of the inversion integral of 3~(k, s) seems 
difficult because of the complicated s dependence of d~r(k, s), and we have 
carried out a numerical integration. The result for k = 2.0 A-  ~ is plotted in 
Fig. 2. The original exponential memory function in the MKE and the double 
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Fig. 3. Same as Fig. 2, for  o ther  values o f k .  The  solid line for  k = 4 .5 /~ -1  is the  result  
o f  the  collisionless approximat ion .  
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Fig. 4. Symmetrized scattering function S(k, oJ) for liquid Rb as a function of  oJ. The 
solid lines are the results of  the M K E  with the parameter  ~(k) given in Table I. The dots 
denote the experimental data of  Copley and Rowe. <1~> 
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Gaussian memory function given by Kahol et al. (la) have also been shown 
for comparison. A striking qualitative similarity of M(k,  t)  to the double 
Gaussian memory function is seen; that is, M(k,  t) exhibits two distinct 
decays, an initial, Gaussian-like fast decay followed by a much slower one. 
It should be mentioned that the relaxation times of the two memory functions 
are not in agreement, as seen in Table IS; the quantitative comparison is 
therefore meaningless. 

Similar results have been found for other values of k, as shown in Fig. 3. 
As k increases, the memory effect in the MKE becomes less important; the 
memory function M(k ,  t) then becomes nearly Gaussian, again in good 
qualitative agreement with the result of Kahol et aL (~3~ The memory function 
at k = 4.5 A-  ~ is the result of the coUisionless limit. In this limit the fourth- 
order sum rule is violated, and M(k ,  O) = (kvo)2/(w~ 2 - 0)o 2) va 1. 

To see the validity of the memory functions obtained above, we have 
calculated the scattering function ~(k, co), and compared with the experimental 
results of Copley and Rowe for the symmetrized scattering function. As seen 
in Fig. 4, the agreement is reasonably good, showing that the MKE takes 
good account of the effects of the two distinct decays of M(k ,  t). The struc- 
ture (15~ in the experimental result at k = 2.0 A -1 is seen to be somewhat 
exaggerated. A qualitative disagreement is seen at k = 1.25 ]k -~, where the 
structure is missing from the present result; the memory function M(k ,  t) in 
this case is not very different from the exponential one. This seems to indicate 
the inadequacy of the simple exponential memory function (4) in the M K E )  

4. D I S C U S S I O N  

It has been shown that the MKE with the exponential memory function 
can account for the double Gaussian decay of the memory function M(s t) 
in the CF formalism. The reason for this is that, although the MKE is a 
single-relaxation-time model, the Vlasov terms also contribute to the memory 
function M(k, t). At large k's, the memory term is unimportant and the 
Vlasov terms give rise to a nearly Gaussian decay of M(k ,  t). At smaller k's 
their effects are mixed together in M(k ,  t) to exhibit the two distinct decays. 
This mixing has been seen in (20) for the relaxation time and in (22) for the 
initial decay of  M(k, t). For  k smaller than about 1.3 A -1 (in the case of  liquid 
Rb), the simple exponential model (4) seems inadequate. For much smaIler k 

3 The reason for this is that the values of S(k, oJ = 0) in Ref. 13 do not agree with 
experiment, and also that in Ref. 13, Rahman's molecular-dynamics data are used for 
S(k) and oil(k). 
The discrepancy is not due to the incorrect hydrodynamic limit of the MKE; heat 
conduction effects are important only for k < 0.35 ,~- 1, as seen from the recent work 
by Sj6gren and SjSlanderJ TM It is therefore desirable to examine the MKE in the range 
0.35 < k ~< 1.2/~-1 with sufficiently accurate data of S(k), o~,(k), and S(k, oJ). 
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(k < 0.35 A- l ) ,  the assumption (3) breaks down and the memory function of 
Jhon and Forster (6~ should be used. 

The fact that the exponential memory function gives good results is 
worth noting, since it suggests that the memory effect arises from a certain 
well-defined physical quantity, which has been made hidden in the kinetic 
equation (1) by the projection method. The parameter 1/~(k) can be inter- 
preted in terms of the proper lifetime (or a relaxation time) of this physical 
quantity. In a previous paper (7~ we have considered zero sound as a hidden 
quantity to derive a kinetic equation of the form (1). The memory effect 
arises in this case from the finite duration of  the collision between atoms that 
occurs through the intermediary of zero sound. The relaxation time of the 
memory function is thus of the order of magnitude of the lifetimes of the 
zero-sound waves, which has been found to be 1-0.1 psec; this is consistent 
with the values of ~(k) found in the present paper. The kinetic equation 
derived in the previous paper, however, does not give the correct fourth 
moment, and an improvement of the theory is now under consideration. 
Searches for such a hidden variable are very much in demand to calculate the 
memory function from first principles and to better understand the dynamical 
behavior of simple classical liquids. 
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